Year 2

Year 2 Addition	Concrete	Pictorial	Abstract
Understanding 10s and 1s	Group objects into 10 s and 1 s . Bundle straws to understand unitising of 10s.	Understand 10s and 1s equipment, and link with visual representations on ten frames.	Represent numbers on a place value grid, using equipment or numerals.
Adding 10s	Use known bonds and unitising to add 10s. (III) III) I know that $4+3=7$. So, I know that 4 tens add 3 tens is 7 tens.	Use known bonds and unitising to add 10s. I know that $4+3=7$. So, I know that 4 tens add 3 tens is 7 tens.	Use known bonds and unitising to add 10s. $\begin{aligned} & 4+3=\square \\ & 4+3=7 \\ & 4 \text { tens }+3 \text { tens }=7 \text { tens } \\ & 40+30=70 \end{aligned}$

Catholic Primary School and Nursery

Adding a 1-digit number to a 2-digit number not bridging a 10	Add the 1 s to find the total. Use known bonds within 10. 41 is 4 tens and 1 one. 41 add 6 ones is 4 tens and 7 ones. This can also be done in a place value grid.	Add the 1s. 34 is 3 tens and 4 ones. 4 ones and 5 ones are 9 ones. The total is 3 tens and 9 ones.
Adding a 1-digit number to a 2-digit number bridging 10	Complete a 10 using number bonds. There are 4 tens and 5 ones. I need to add 7 . I will use 5 to complete a 10 , then add 2 more.	Complete a 10 using number bonds.

Adding a multiple of 10 to a 2-digit number using columns	Add the 10s using a place value grid to support. 16 is 1 ten and 6 ones. 30 is 3 tens. There are 4 tens and 6 ones in total.	Add the 10s using a place value grid to support. 16 is 1 ten and 6 ones. 30 is 3 tens. There are 4 tens and 6 ones in total.	Add the 10 s represented vertically. Children must understand how the method relates to unitising of 10 s and place value.
Adding two 2-digit numbers	Add the 10s and 1 s separately. $5+3=8$ There are 8 ones in total. $3+2=5$ There are 5 tens in total. $35+23=58$	Add the 10s and 1 s separately. Use a part-whole model to support. $\begin{aligned} & 11=10+1 \\ & 32+10=42 \\ & 42+1=43 \end{aligned}$ $32+11=43$	

Calculation Policy - Year 2
St Mary's

Calculation Policy - Year 2
St Mary's
Catholic Primary School and Nursery

Year 2 Subtraction	Concrete	Pictorial	Abstract
Subtracting multiples of 10	Use known number bonds and unitising to subtract multiples of 10 . 8 subtract 6 is 2 . So, 8 tens subtract 6 tens is 2 tens.	Use known number bonds and unitising to subtract multiples of 10 . $10-3=7$ So, 10 tens subtract 3 tens is 7 tens.	Use known number bonds and unitising to subtract multiples of 10 . 7 tens subtract 5 tens is 2 tens. $70-50=20$
Subtracting a single-digit number	Subtract the 1 s . This may be done in or out of a place value grid.	Subtract the 1s. This may be done in or out of a place value grid.	Subtract the 1s. Understand the link between counting back and subtracting the 1s using known bonds. $\begin{array}{rc} \mathrm{T} \quad 0 \\ \hline 3 & \\ -\quad 3 \\ \hline 3 & \\ \hline & 6-3=6 \\ & 39-3=36 \end{array}$

Catholic Primary School and Nursery

Catholic Primary School and Nursery

Subtracting a 2-digit number using place value and columns	Subtract the 1s. Then subtract the 10s. This may be done in or out of a place value grid. $38-16=22$	Subtract the 1 s . Then subtract the 10s.
Subtracting a 2-digit number with exchange		Exchange 1 ten for 10 ones. Then subtract the 1 s . Then subtract the 10 s .

St Mary's
Catholic Primary School and Nursery

Year 2 Multiplication	Concrete	Pictorial	Abstract
Equal groups and repeated addition	Recognise equal groups and write as repeated addition and as multiplication. 3 groups of 5 chairs 15 chairs altogether	Recognise equal groups using standard objects such as counters and write as repeated addition and multiplication.	Use a number line and write as repeated addition and as multiplication. $\begin{aligned} & 5+5+5=15 \\ & 3 \times 5=15 \end{aligned}$
Using arrays to represent multiplication and support understanding	Understand the relationship between arrays, multiplication and repeated addition. 4 groups of 5	Understand the relationship between arrays, multiplication and repeated addition. 4 groups of 5 ... 5 groups of 5	Understand the relationship between arrays, multiplication and repeated addition.
Understanding commutativity	Use arrays to visualise commutativity. I can see 6 groups of 3 . I can see 3 groups of 6 .	Form arrays using counters to visualise commutativity. Rotate the array to show that orientation does not change the multiplication. This is 2 groups of 6 and also 6 groups of 2 .	Use arrays to visualise commutativity. $\begin{aligned} & 4+4+4+4+4=20 \\ & 5+5+5+5=20 \\ & 4 \times 5=20 \text { and } 5 \times 4=20 \end{aligned}$

Calculation Policy - Year 2
St Mary's
Catholic Primary School and Nursery

Learning $\times 2$, $\times 5$ and $\times 10$ table facts	Develop an understanding of how to unitise groups of 2, 5 and 10 and learn corresponding times-table facts. 3 groups of $10 \ldots 10,20,30$ $3 \times 10=30$	Understand how to relate counting in unitised groups and repeated addition with knowing key times-table facts. ○○○○○○○○○○ 0000000000 0000000000 $\begin{aligned} & 10+10+10=30 \\ & 3 \times 10=30 \end{aligned}$	Understand how the times-tables increase and contain patterns. $\begin{aligned} & 5 \times 10=50 \\ & 6 \times 10=60 \end{aligned}$

Calculation Policy - Year 2
St Mary's
Catholic Primary School and Nursery

Year 2 Division	Concrete	Pictorial	Abstract
Sharing equally	Start with a whole and share into equal parts, one at a time. 12 shared equally between 2. They get 6 each. Start to understand how this also relates to grouping. To share equally between 3 people, take a group of 3 and give 1 to each person. Keep going until all the objects have been shared They get 5 each. 15 shared equally between 3. They get 5 each.	Represent the objects shared into equal parts using a bar model. 20 shared into 5 equal parts. There are 4 in each part.	Use a bar model to support understanding of the division. $18 \div 2=9$

Calculation Policy - Year 2
St Mary's
Catholic Primary School and Nursery

Grouping equally	Understand how to make equal groups from a whole. 0.025 \square 8 divided into 4 equal groups. There are 2 in each group.	Understand the relationship between grouping and the division statements. $12 \div 3=4$ $12 \div 4=3$ $12 \div 6=2$ $12 \div 2=6$	Understand how to relate division by grouping to repeated subtraction. There are 4 groups now. 12 divided into groups of 3 . $12 \div 3=4$ There are 4 groups.
Using known times-tables to solve divisions	Understand the relationship between multiplication facts and division. 4 groups of 5 cars is 20 cars in total. 20 divided by 4 is 5 .	Link equal grouping with repeated subtraction and known times-table facts to support division. 40 divided by 4 is 10 . Use a bar model to support understanding of the link between times-table knowledge and division.	Relate times-table knowledge directly to division. $\begin{aligned} & 1 \times 10=10 \\ & 2 \times 10=20 \\ & 3 \times 10=30 \\ & 4 \times 10=40 \\ & 5 \times 10=50 \\ & 6 \times 10=60 \\ & 7 \times 10=70 \\ & 8 \times 10=80 \end{aligned}$ I used the IO times-table to help me. $3 \times 10=30$ I know that 3 groups of 10 makes 30, so I know that 30 divided by 10 is 3 . $3 \times 10=30 \text { so } 30 \div 10=3$

