Year 4			
Year 4 Addition	Concrete	Pictorial	Abstract
Understanding numbers to 10,000	Use place value equipment to understand the place value of 4 -digit numbers. 4 thousands equal 4,000. 1 thousand is 10 hundreds.	Represent numbers using place value counters once children understand the relationship between $1,000 \mathrm{~s}$ and 100s. $2,000+500+40+2=2,542$	Understand partitioning of 4-digit numbers, including numbers with digits of 0 . $5,000+60+8=5,068$ Understand and read 4-digit numbers on a number line.
Choosing mental methods where appropriate	Use unitising and known facts to support mental calculations. Make 1,405 from place value equipment. Add 2,000. Now add the 1,000s. 1 thousand +2 thousands $=3$ thousands $1,405+2,000=3,405$	Use unitising and known facts to support mental calculations. I can add the 100s mentally. $200+300=500$ So, $4,256+300=4,556$	Use unitising and known facts to support mental calculations. $\begin{aligned} & 4,256+300=? \\ & 2+3=5 \quad 200+300=500 \\ & 4,256+300=4,556 \end{aligned}$

Calculation Policy - Year 4
St Mary's
Catholic Primary School and Nursery

Column addition with exchange	Use place value equipment on a place value grid to organise thinking. Ensure that children understand how the columns relate to place value and what to do if the numbers are not all 4-digit numbers. Use equipment.to show 1,905+775.			
	Th	H	T	\bigcirc
	Θ	$\begin{aligned} & \odot \odot \odot \odot \odot \\ & \odot \odot \odot \Theta \end{aligned}$		00000
		$\bigcirc \bigcirc \bigcirc \bigcirc$	$\bigcirc \odot \odot \odot \bigcirc$	00000

Why have only three columns been used for the second row? Why is the Thousands box empty?

Which columns will total 10 or more?

Use place value equipment to model required exchanges.

©

Include examples that exchange in more than one column.

Use a column method to add, including exchanges.

Th	H	T	O
I	5	5	4
+4	2	3	7
			1

$$
\begin{array}{rr|r|r}
\text { Th } & \mathrm{H} & \mathrm{~T} & \mathrm{O} \\
\hline \mathrm{I} & 5 & 5 & 4 \\
+4 & 2 & 3 & 7 \\
\hline & & 9 & 1 \\
\hline & & &
\end{array}
$$

\[

\]

$+$| Th | H | T | O |
| :---: | :---: | :---: | :---: |
| I | 5 | 5 | 4 |
| 4 | 2 | 3 | 7 |
| 5 | 7 | q | I |

Include examples that exchange in more than one column.

Calculation Policy - Year 4
St Mary's
Catholic Primary School and Nursery

Catholic Primary School and Nursery

Year 4 Subtraction						
Choosing mental methods where appropriate	Use place value equipment to justify mental methods. What number will be left if we take away 300?	$7,646-40=7,606$				Use knowledge of place value and unitising to subtract mentally where appropriate. $3,501-2,000$ 3 thousands -2 thousands $=1$ thousand $3,501-2,000=1,501$
Column subtraction with exchange	Understand why exchange of a 1,000 for 100s, a 100 for 10 s, or a 10 for 1 s may be necessary. \rightarrow 闆蕌	Represent place value exchanges	place value grid to su where ne	e equipm btract, in eded. $\frac{{ }^{\top}{ }^{\top} \otimes \otimes \mid}{}$ $\stackrel{\top}{\top}$	ent on a cluding	Use column subtraction, with understanding of the place value of any exchange required.

Column subtraction with exchange across more than one column	Understand why two exchanges may be necessary. $2,502-243=?$ g I need to exchange a 10 for some 1 s , but there are not any 10s here.	Make exchanges across more than one column where there is a zero as a place holder. $2,502-243=?$	Make exchanges across more than one column where there is a zero as a place holder. $2,502-243=?$

			$\begin{array}{rrrr} \text { Th } & H & \text { T } & O \\ \hline 2 & 48 & 9^{\prime} & 1 \\ \hline & 2 & 4 & 3 \\ \hline & 2 & 5 & 9 \\ \hline \end{array}$
Representing subtractions and checking strategies		Use bar models to represent subtractions where a part needs to be calculated. I can work out the total number of Yes votes using 5,762-2,899. Bar models can also represent 'find the difference' as a subtraction problem.	Use inverse operations to check subtractions. I calculated 1,225-799=574. I will check by adding the parts. The parts do not add to make 1,225. I must have made a mistake.

Year 4 Multiplication			
Multiplying by multiples of 10 and 100	Use unitising and place value equipment to understand how to multiply by multiples of 1,10 and 100. 3 groups of 4 ones is 12 ones. 3 groups of 4 tens is 12 tens. 3 groups of 4 hundreds is 12 hundreds.	Use unitising and place value equipment to understand how to multiply by multiples of 1,10 and 100. $3 \times 4=12$ $3 \times 40=120$ $3 \times 400=1,200$	Use known facts and understanding of place value and commutativity to multiply mentally. $\begin{aligned} & 4 \times 7=28 \\ & 4 \times 70=280 \\ & 40 \times 7=280 \end{aligned}$ $\begin{aligned} & 4 \times 700=2,800 \\ & 400 \times 7=2,800 \end{aligned}$
Understanding times-tables up to 12×12	Understand the special cases of multiplying by 1 and 0 . $5 \times 1=5$ $5 \times 0=0$	Represent the relationship between the $\times 9$ table and the $\times 10$ table. Represent the $\times 11$ table and $\times 12$ tables in relation to the $\times 10$ table. $\begin{aligned} & 2 \times 11=20+2 \\ & 3 \times 11=30+3 \\ & 4 \times 11=40+4 \end{aligned}$ $4 \times 12=40+8$	Understand how times-tables relate to counting patterns. Understand links between the $\times 3$ table, $\times 6$ table and $\times 9$ table 5×6 is double 5×3 $\times 5$ table and $\times 6$ table 1 know that $7 \times 5=35$ so 1 know that $7 \times 6=35+7$. $\times 5$ table and $\times 7$ table $3 \times 7=3 \times 5+3 \times 2$ $\times 9$ table and $\times 10$ table $\begin{aligned} & 6 \times 10=60 \\ & 6 \times 9=60-6 \end{aligned}$

Catholic Primary School and Nursery

Understanding and using partitioning in multiplication	Make multiplications by partitioning. 4×12 is 4 groups of 10 and 4 groups of 2 . $4 \times 12=40+8$	Understand how multiplication and partitioning are related through addition.	Use partitioning to multiply 2-digit numbers by a single digit. $18 \times 6=?$ $\begin{aligned} 18 \times 6 & = & 10 \times 6+8 \times 6 \\ & = & 60+48 \\ & = & 108 \end{aligned}$
Column multiplication for 2- and 3-digit numbers multiplied by a single digit	Use place value equipment to make multiplications. Make 4×136 using equipment. I can work out how many 1s, 10s and 100s. $\begin{array}{ll}\text { There are } 4 \times 6 \text { ones... } & 24 \text { ones } \\ \text { There are } 4 \times 3 \text { tens } \ldots & 12 \text { tens } \\ \text { There are } 4 \times 1 \text { hundreds ... } 4 \text { hundreds }\end{array}$ $24+120+400=544$	Use place value equipment alongside a column method for multiplication of up to 3 -digit numbers by a single digit.	Use the formal column method for up to 3-digit numbers multiplied by a single digit. $\begin{array}{r} 312 \\ \times \quad 3 \\ \hline 936 \\ \hline \end{array}$ Understand how the expanded column method is related to the formal column method and understand how any exchanges are related to place value at each stage of the calculation.

Calculation Policy - Year 4
St Mary's
Catholic Primary School and Nursery

Multiplying more than two numbers	Represent situations by multiplying three numbers together. Each sheet has 2×5 stickers. There are 3 sheets. There are $5 \times 2 \times 3$ stickers in total. $\underbrace{5 \times 2}_{10 \times 3} \times 3=30$	Understand that commutativity can be used to multiply in different orders. $\begin{gathered} 2 \times 6 \times 10=120 \\ 12 \times 10=120 \end{gathered}$ $\begin{array}{r} 10 \times 6 \times 2=120 \\ 60 \times 2=120 \end{array}$	Use knowledge of factors to simplify some multiplications. $\begin{aligned} & 24 \times 5=12 \times 2 \times 5 \\ & 12 \times \underbrace{2 \times 5}_{1}= \\ & 12 \times 10=120 \end{aligned}$ So, $24 \times 5=120$

Year 4 Division			
Understanding the relationship between multiplication and division, including times-tables	Use objects to explore families of multiplication and division facts. $4 \times 6=24$ 24 is 6 groups of 4. 24 is 4 groups of 6 . 24 divided by 6 is 4 . 24 divided by 4 is 6 .	Represent divisions using an array. $0000 \cdot 00$ 000000 0000000 0000000 $28 \div 7=4$	Understand families of related multiplication and division facts. I know that $5 \times 7=35$ so I know all these facts: $\begin{aligned} & 5 \times 7=35 \\ & 7 \times 5=35 \\ & 35=5 \times 7 \\ & 35=7 \times 5 \\ & 35 \div 5=7 \\ & 35 \div 7=5 \\ & 7=35 \div 5 \\ & 5=35 \div 7 \end{aligned}$
Dividing multiples of 10 and 100 by a single digit	Use place value equipment to understand how to use unitising to divide. 8 ones divided into 2 equal groups 4 ones in each group 8 tens divided into 2 equal groups 4 tens in each group 8 hundreds divided into 2 equal groups 4 hundreds in each group	Represent divisions using place value equipment. $9 \div 3=3$ 9 tens divided by 3 is 3 tens. 9 hundreds divided by 3 is 3 hundreds.	Use known facts to divide 10s and 100s by a single digit. $\begin{aligned} & 15 \div 3=5 \\ & 150 \div 3=50 \\ & 1500 \div 3=500 \end{aligned}$

Calculation Policy－Year 4
St Mary＇s
Catholic Primary School and Nursery

Dividing 2－digit and 3－digit numbers by a single digit by partitioning into 100s，10s and 1 s	Partition into 10s and 1 s to divide where appropriate． $39 \div 3=?$ $\begin{gathered} 39=30+9 \\ 30 \div 3=10 \\ 9 \div 3=3 \\ 39 \div 3=13 \end{gathered}$	Partition into 100s，10s and 1s using Base 10 equipment to divide where appropriate． $39 \div 3=?$ （0）日 日是 00 0 3 groups of I ten 3 groups of 3 ones $39=30+9$ $\begin{gathered} 30 \div 3=10 \\ 9 \div 3=3 \\ 39 \div 3=13 \end{gathered}$	Partition into 100s，10s and 1s using a part－ whole model to divide where appropriate． $142 \div 2=?$
Dividing 2－digit and 3－digit numbers by a single digit， using flexible partitioning	Use place value equipment to explore why different partitions are needed． $42 \div 3=?$ I will split it into 30 and 12，so that I can divide by 3 more easily． $\square \square$	Represent how to partition flexibly where needed． $84 \div 7=?$ I will partition into 70 and 14 because I am dividing by 7 ． $84 \div 7=12$	Make decisions about appropriate partitioning based on the division required． Understand that different partitions can be used to complete the same division．

Catholic Primary School and Nursery

