

Adding tenths	Link measure with addition of decimals. Two lengths of fencing are 0.6 m and 0.2 m. How long are they when added together? 0.6 m 0.2 m 	Use a bar model with a number line to add tenths. $0.6+0.2=0.8$ 6 tenths +2 tenths $=8$ tenths	Understand the link with adding fractions. $\begin{aligned} & \frac{6}{10}+\frac{2}{10}=\frac{8}{10} \\ & 6 \text { tenths }+2 \text { tenths }=8 \text { tenths } \\ & 0.6+0.2=0.8 \end{aligned}$
Adding decimals using column addition	Use place value equipment to represent additions. Show $0.23+0.45$ using place value counters.	Use place value equipment on a place value grid to represent additions. Represent exchange where necessary. $$ Include examples where the numbers of decimal places are different. $$	Add using a column method, ensuring that children understand the link with place value. $\begin{array}{r} \mathrm{O} \cdot \end{array} \begin{array}{r} \text { Tth } \\ \hline 0 \end{array} \cdot 2 \begin{gathered} \text { Hth } \\ \hline 0 \cdot \end{gathered} 4$ Include exchange where required, alongside an understanding of place value. $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 0 \cdot 9 \\ +0 \cdot 3 \\ \hline 0 \cdot 3 \\ \hline 1 \cdot 2 \\ \hline \end{array}$ Include additions where the numbers of decimal places are different. $\begin{aligned} & 3.4+0.65=? \\ & \begin{array}{l} 0 \cdot \text { Tth Hth } \\ \hline 3 \cdot 4 \\ +0 \cdot 6 \\ \hline \end{array} \end{aligned}$

	Calculation Policy - Year 5				
Choosing efficient methods					To subtract two large numbers that are close, children find the difference by counting on. $2,002-1,995=?$ Use addition to check subtractions. I calculated 7,546-2,355 = 5,191. I will check using the inverse.
Subtracting decimals	Explore complements to a whole number by working in the context of length. $\mathrm{Im}-\square \mathrm{m}=\square \mathrm{m}$ $1-0.49=?$	Use a place stages of c exchanges 5.74-2.25 Exchange I tent Now subtract th Now subtract th \square	e value grid column subtra where requi 5 = ? th for 10 hundredth he 5 hundredths. he 2 tenths, then th - Tth - $\varnothing \varnothing$	to represent the action, including ired. the 2 ones.	Use column subtraction, with an understanding of place value, including subtracting numbers with different numbers of decimal places. $3.921-3.75=?$ $\left.\begin{array}{rccc}\mathrm{O} & \cdot & \text { Tth } & \text { Hth } \\ \hline 3 \cdot & \text { Thth } \\ - & 9 & 2 & 1 \\ 3 & \cdot & 7 & 5\end{array}\right) 0$

Year 5 Multiplication	Concrete	Pictorial	Abstract
Understanding factors	Use cubes or counters to explore the meaning of 'square numbers'. 25 is a square number because it is made from 5 rows of 5 . Use cubes to explore cube numbers. 8 is a cube number.	Use images to explore examples and nonexamples of square numbers. $\begin{aligned} & 8 \times 8=64 \\ & 8^{2}=64 \end{aligned}$ 12 is not a square number, because you cannot multiply a whole number by itself to make 12.	Understand the pattern of square numbers in the multiplication tables. Use a multiplication grid to circle each square number. Can children spot a pattern?
Multiplying by 10, 100 and 1,000	Use place value equipment to multiply by 10,100 and 1,000 by unitising.	Understand the effect of repeated multiplication by 10 .	Understand how exchange relates to the digits when multiplying by 10, 100 and 1,000. $\begin{aligned} & 17 \times 10=170 \\ & 17 \times 100=17 \times 10 \times 10=1,700 \\ & 17 \times 1,000=17 \times 10 \times 10 \times 10=17,000 \end{aligned}$

Calculation Policy - Year 5

Multiplying 2digit numbers by 2-digit numbers	Partition one number into 10 s and 1 s , then add the parts. $23 \times 15=?$ पारा $3 \times 15=45$ There are 345 bottles of milk in total. $23 \times 15=345$	Use 28 10 m $28 \times$	area model = ? \qquad $20 \times 10=200 \mathrm{~m}^{2}$ $20 \times 5=100 \mathrm{~m}^{2}$ $\overline{5}=420$	add the parts.	Use column multiplication, ensuring understanding of place value at each stage.
Multiplying up to 4-digits by 2-digits			area model 0 40 I.716 1,716 boxes of cereal $12=1,716$	add the parts. \square	Use column multiplication, ensuring understanding of place value at each stage. Progress to include examples that require multiple exchanges as understanding, confidence and fluency build. $1,274 \times 32=?$ First multiply 1,274 by 2.

Calculation Policy - Year 5

	Calculation Policy - Year 5		
Year 5 Division			
Understanding factors and prime numbers	Use equipment to explore the factors of a given number. $\begin{aligned} & 24 \div 3=8 \\ & 24 \div 8=3 \end{aligned}$ 8 and 3 are factors of 24 because they divide 24 exactly. $24 \div 5=4$ remainder 4 . 5 is not a factor of 24 because there is a remainder.	Understand that prime numbers are numbers with exactly two factors. $\begin{aligned} & 13 \div 1=13 \\ & 13 \div 2=6 r 1 \\ & 13 \div 4=4 r 1 \end{aligned}$ 1 and 13 are the only factors of 13. 13 is a prime number.	Understand how to recognise prime and composite numbers. I know that 31 is a prime number because it can be divided by only 1 and itself without leaving a remainder. I know that 33 is not a prime number as it can be divided by 1, 3, 11 and 33. I know that 1 is not a prime number, as it has only 1 factor.
Understanding inverse operations and the link with multiplication, grouping and sharing	Use equipment to group and share and to explore the calculations that are present. I have 28 counters. I made 7 groups of 4. There are 28 in total. I have 28 in total. I shared them equally into 7 groups. There are 4 in each group. I have 28 in total. I made groups of 4. There are 7 equal groups.	Represent multiplicative relationships and explore the families of division facts. $\begin{aligned} & 60 \div 4=15 \\ & 60 \div 15=4 \end{aligned}$	Represent the different multiplicative relationships to solve problems requiring inverse operations. $12 \div 3=\square$ $12 \div$ \square $=3$ \square $\times 3=12$ \square $\div 3=12$ Understand missing number problems for division calculations and know how to solve them using inverse operations. $\begin{aligned} & 22 \div ?=2 \\ & 22 \div 2=? \\ & ? \div 2=22 \\ & ? \div 22=2 \end{aligned}$

Calculation Policy - Year 5															
Dividing whole numbers by 10, 100 and 1,000	Use place value equipment to support unitising for division. 4,000 is 4 thousands. $4 \times 1,000=4,000$ So, $4,000 \div 1,000=4$	380 is 38 tens. $38 \times 10=380$ $10 \times 38=380$ So, $380 \div 10=38$										$3,200 \div 100=?$ 3,200 is 3 thousands and 2 hundreds. $\begin{aligned} & 200 \div 100=2 \\ & 3,000 \div 100=30 \\ & 3,200 \div 100=32 \end{aligned}$ So, the digits will move two places to the right.			
Dividing by multiples of 10, 100 and 1,000	Use place value equipment to represent known facts and unitising. 15 ones put into groups of 3 ones. There are 5 groups. $15 \div 3=5$ 15 tens put into groups of 3 tens. There are 5 groups. $150 \div 30=5$	Represent related facts with place value equipment when dividing by unitising. 180 is 18 tens. 18 tens divided into groups of 3 tens. There are 6 groups. $180 \div 30=6$										Reason from known facts, based on understanding of unitising. Use knowledge of the inverse relationship to check.$\begin{aligned} & 3,000 \div 5=600 \\ & 3,000 \div 50=60 \\ & 3,000 \div 500=6 \end{aligned}$$\begin{aligned} & 5 \times 600=3,000 \\ & 50 \times 60=3,000 \\ & 500 \times 6=3,000 \end{aligned}$			

		12 ones divided into groups of 4. There are 3 groups. 12 hundreds divided into groups of 4 hundreds. There are 3 groups. $1200 \div 400=3$	
Dividing up to four digits by a single digit using short division	Explore grouping using place value equipment. $268 \div 2=?$ There is 1 group of 2 hundreds. There are 3 groups of 2 tens. There are 4 groups of 2 ones. $264 \div 2=134$	Use place value equipment on a place value grid alongside short division. The model uses grouping. A sharing model can also be used, although the model would need adapting. Lay out the problem as a short division. There is 1 group of 4 in 4 tens. There are 2 groups of 4 in 8 ones. Work with divisions that require exchange.	Use short division for up to 4-digit numbers divided by a single digit. $\begin{aligned} & 0 \\ & 7 \lcm{3} \begin{array}{rrr} 3 & 5 & 5 \\ \hline \end{array} \\ & 7 \begin{array}{l} 4 \\ 3 \end{array} \\ & 392 \div 7=556 \end{aligned}$ Use multiplication to check. $556 \times 7=?$ $6 \times 7=42$ $50 \times 7=350$ $500 \times 7=3500$ $3,500+350+42=3,892$

