

Selecting mental methods for larger numbers where appropriate	Represent 7-digit numbers on a place value grid, and use this to support thinking and mental methods. $2,411,301+500,000=?$ This would be 5 more counters in the HTh place. So, the total is $2,911,301$. $2,411,301+500,000=2,911,301$	Use a bar model to support thinking in addition problems. I added 100 thousands then subtracted 1 thousand. 257 thousands + 100 thousands $=357$ thousands $\begin{aligned} & 257,000+100,000=357,000 \\ & 357,000-1,000=356,000 \end{aligned}$ So, $257,000+99,000=356,000$	Use place value and unitising to support mental calculations with larger numbers. $\begin{aligned} & 195,000+6,000=? \\ & 195+5+1=201 \end{aligned}$ 195 thousands +6 thousands $=201$ thousands So, $195,000+6,000=201,000$
Understanding order of operations in calculations	Use equipment to model different interpretations of a calculation with more than one operation. Explore different results.	Model calculations using a bar model to demonstrate the correct order of operations in multi-step calculations.	Understand the correct order of operations in calculations without brackets. Understand how brackets affect the order of operations in a calculation. $\begin{aligned} & 4+6 \times 16 \\ & 4+96=100 \\ & (4+6) \times 16 \\ & 10 \times 16=160 \end{aligned}$

Year 6 Subtraction	Concrete	Pictorial	Abstract
Comparing and selecting efficient methods	Use counters on a place value grid to represent subtractions of larger numbers.	Compare subtraction methods alongside place value representations. Use a bar model to represent calculations, including 'find the difference' with two bars as comparison.	Compare and select methods. Use column subtraction when mental methods are not efficient. Use two different methods for one calculation as a checking strategy. Use column subtraction for decimal problems, including in the context of measure.
Subtracting mentally with larger numbers		Use a bar model to show how unitising can support mental calculations. $950,000-150,000$ That is 950 thousands - 150 thousands \square \square So, the difference is 800 thousands. $950,000-150,000=800,000$	Subtract efficiently from powers of 10 . $10,000-500=?$

Calculation Policy - Year 6

St Mary's

Using knowledge of factors and partitions to compare methods for multiplications	Use equipment to understand square numbers and cube numbers. $\begin{aligned} & 5 \times 5=5^{2}=25 \\ & 5 \times 5 \times 5=5^{3}=25 \times 5=125 \end{aligned}$	Compare methods visually using an area model. Understand that multiple approaches will produce the same answer if completed accurately. Represent and compare methods using a bar model.	Use a known fact to generate families of related facts. Use factors to calculate efficiently. $\begin{aligned} & 15 \times 16 \\ = & 3 \times 5 \times 2 \times 8 \\ = & 3 \times 8 \times 2 \times 5 \\ = & 24 \times 10 \\ = & 240 \end{aligned}$
Multiplying by 10, 100 and 1,000	Use place value equipment to explore exchange in decimal multiplication. Represent 0.3. Multiply by 10 . Exchange each group of ten tenths. $0.3 \times 10=?$ 0.3 is 3 tenths. 10×3 tenths are 30 tenths. 30 tenths are equivalent to 3 ones.	Understand how the exchange affects decimal numbers on a place value grid. $0.3 \times 10=3$	Use knowledge of multiplying by 10, 100 and 1,000 to multiply by multiples of 10,100 and 1,000. $\begin{aligned} 8 \times 100 & =800 \\ 8 \times 300 & =800 \times 3 \\ & =2,400 \\ 2.5 \times 10 & =25 \\ 2.5 \times 20 & =2.5 \times 10 \times 2 \\ & =50 \end{aligned}$

Calculation Policy - Year 6

Dividing by a 2-digit number using factors	Understand that division by factors can be used when dividing by a number that is not prime.	Use factors and repeated division. $1,260 \div 14=?$ \square \square \square $1,260 \div 2=630$ $\begin{aligned} & 630 \div 7=90 \\ & 1,260 \div 14=90 \end{aligned}$	Use factors and repeated division where appropriate. $2,100 \div 12=?$ $2.100 \longrightarrow \div 2$ 2,100 $\longrightarrow \div 6$ $2,100 \longrightarrow \div 3 \longrightarrow+4$ $2,100 \longrightarrow \div 4 \longrightarrow$ 4 $2,100 \rightarrow \div \div \div \div$
Dividing by a 2-digit number using long division	Use equipment to build numbers from groups. 182 divided into groups of 13. There are 14 groups.	Use an area model alongside written division to model the process. $377 \div 13=?$ 13 \square 13 \square 13 $377 \div 13=29$	Use long division where factors are not useful (for example, when dividing by a 2-digit prime number). Write the required multiples to support the division process. $377 \div 13=?$ $1 3 \longdiv { 3 7 7 }$ $-$130 247 $-$1 3 0 1 10 $-1 \quad 7 \frac{9}{29}$ $377 \div 13=29$ A slightly different layout may be used, with the division completed above rather than at the side.

	Calculation Policy - Year 6		
			$\begin{array}{r} 3 \\ \hline 21 \\ \hline 7 \end{array} 988$ $\begin{array}{r} \\ 3 \\ 21 \\ 27 \\ \hline \end{array}$ Divisions with a remainder explored in problem-solving contexts.
Dividing by 10, 100 and 1,000	Use place value equipment to explore division as exchange. Exchange each 0.1 for ten 0.01 s . Divide 20 counters by 10 . 0.2 is 2 tenths. 2 tenths is equivalent to 20 hundredths. 20 hundredths divided by 10 is 2 hundredths.	Represent division to show the relationship with multiplication. Understand the effect of dividing by 10,100 and 1,000 on the digits on a place value grid. Understand how to divide using division by 10,100 and 1,000. $12 \div 20=?$ \square \square ?	Use knowledge of factors to divide by multiples of 10, 100 and 1,000. $\begin{aligned} & 40 \div 50=\square \\ & 40 \rightarrow \square \div 10 \rightarrow+\square ?+5 \\ & 40 \rightarrow \square+\square \\ & 40 \div 5=8 \\ & 8 \div 10=0.8 \end{aligned}$ So, $40 \div 50=0.8$

Dividing decimals	Use place value equipment to explore division of decimals. 8 tenths divided into 4 groups. 2 tenths in each group.	Use a bar model to represent divisions.				Use short division to divide decimals with up to 2 decimal places.
		0.8				
		?	?	?	$?$	
		$4 \times 2=$		8		
		So, $4 \times$	$=0.8$		$4=0.2$	

